CRISPR Genome Editing: Considerations for Therapeutic Applications

November 9, 2017
Cecilia Fernandez
Medicines that Aim to Repair Any Broken Gene

Potential to create the next major category of transformative medicines
CRISPR Provides Versatile Genome Editing Systems

- Complex of nuclease and guide RNA precisely locates and cuts genomic sites
- Ability to target several sites simultaneously using multiple guide RNAs
- Nuclease can be engineered to reach more sites and to modulate cutting
Non-homologous end joining typically **disrupts a gene or eliminates a disease-causing mutation**

Homology-directed repair and targeted insertion aim to **promote expression of correct DNA sequences**
Broad Toolkit of CRISPR Nucleases

<table>
<thead>
<tr>
<th>MULTIPLE EDITING SYSTEMS</th>
<th>AsCpf1</th>
<th>LbCpf1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpCas9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SaCas9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED FORMS FOR FLEXIBLE TARGETING</th>
<th>AsCpf1</th>
<th>LbCpf1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpCas9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SaCas9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED FORMS WITH INCREASED SPECIFICITY</th>
<th>SpCas9</th>
<th>SaCas9</th>
</tr>
</thead>
<tbody>
<tr>
<td>eS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HiFi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AsCpf1: *Acidaminococcus* species Cpf1; LbCpf1: *Lachnospiraceae* bacterium Cpf1; PAM: Protospacer Adjacent Motif; HiFi: High Fidelity; eS: enhanced Specificity
SpCas9: *Streptococcus pyogenes* Cas9; SaCas9: *Staphylococcus aureus* Cas9

Platform Enables Broad Product Opportunities

- **Broad Range of Sites**
 - SpCas9
 - SaCas9
 - SpCas9 Variants
 - SaCas9 Variants
 - Cpf1
 - Cpf1 Variants
 - Editas Platform

- **Wide Delivery Options**
 - Viral Vector
 - Lipid Nanoparticle
 - Electroporation

- **Diverse Spectrum of Edits**
 - Disrupt
 - Remove
 - Replace
 - Insert

© 2017 Editas Medicine
Lead Finding for Nuclease/gRNA and Specificity

Identify, Measure, Minimize

Proprietary in silico Prediction of Cutting Sites

Testing of On-Target Cutting (Cas9, Cpf1 WT, nickase)

Targeted Panels for Detection of Sites from Biased & Unbiased Screens

Unbiased Detection of Off-Target Cuts and Genomic Alterations (e.g., GUIDE-Seq, UDiTaS™)

In silico Selection
Identification of Robust gRNAs

- S. pyogenes Cas9 RNPs in primary human T cells to knock-out PD-1
- Several gRNAs performed well as assessed by FACS
- Sequencing confirmed indels
- gRNAs analyzed by GUIDE-Seq to identify off targets
Screening of multiple Cpf-1 orthologs and variants

AsCpf1 emerging as the “go to” Cpf1 with Robust activity

% indels at four matched sites in U2OS

% indels by T7E1

0 10 20 30 40 50 60 70 80

MS1 MS5 MS11 MS18

AsCpf1 FnCpf1 LbCpf1 Lb2Cpf1 SpCas9
Control and Specificity to Drive Precision

- **GUIDE-Seq Read Count**

- GUIDE-Seq drives empirical demonstration of selectivity of product candidates
- Off-targets identified by GUIDE-Seq would not be accurately predicted by *in silico* methods alone
A simple question with a complex answer

- Sequence anchored detection approaches are limited to:
 - What is between the primers
 - Amplicon size

Intra-chromosomal Events
- Perfect repair
- Insertion^*
- Deletion^*
- Inversion
- Duplication

Inter-chromosomal Events
- Balanced Translocation
- Unbalanced Translocation

© 2017 Editas Medicine
UDiTaS™ (Uni-Directional Targeted Sequencing)

A simple, robust method for capturing complex editing events in a single reaction

- Measurement of small Indels correlates well with targeted sequencing and T7E1 assays

- Measurement of Inversions and Large Deletions
Platform Enables Broad Product Opportunities

- Broad Range of Sites
- Wide Delivery Options
- Diverse Spectrum of Edits

SpCas9: *Streptococcus pyogenes* Cas9; SaCas9: *Staphylococcus aureus* Cas9

SpCas9 | SaCas9 | SpCas9 Variants | SaCas9 Variants | Cpf1 | Cpf1 Variants | Editas Platform

- Viral Vector
- Lipid Nanoparticle
- Electroporation

~10x

Disrupt | Remove | Replace | Insert
Scalable, Consistent Engineered Cell Therapies

Optimized Delivery of RNP to Primary T cells Via Electroporation
Generating Synthetic Covalently-Coupled Dual gRNA

A completely non-enzymatic process for guide production

Why make a synthetic guide?

- Targeted chemistries anywhere in the molecule
- Unhindered ends and modifications
- Scale up and purity are more compatible with CMC requirements

covalently-coupled dual gRNA (dgRNA)
Cellular Editing Activity

In vitro transcribed and synthetic covalently-coupled dgRNA are equivalent in cells.
Assessing gRNA purity and sequence fidelity

Development of an RNA-Seq based method for gRNA QC

- smRNA/Total RNA
 - 5' 3'OH
 - 3' Polyadenylation
 - First-strand synthesis and tailing by RT
 - Template switching and extension by RT
 - Forward PCR Primer
 - 5' 3'
 - Reverse PCR Primer
 - Addition of full length Illumina adapters by PCR

Graphs:
- synthetic 100mer “A”
- synthetic 100mer “B”
- covalently-coupled dgRNA
gRNA purity and sequence fidelity

Covalently-coupled dgRNA result in greater sequence fidelity in target region

A

B

Covalently-Coupled dgRNA
Single gRNA

Heterogeneous product (full-length, truncated, errors)

Covalently-Coupled Dual gRNA

Well-defined product (full-length)
Platform Enables Broad Product Opportunities

- **SpCas9**: *Streptococcus pyogenes* Cas9; **SaCas9**: *Staphylococcus aureus* Cas9

Wide Delivery Options
- Viral Vector
- Lipid Nanoparticle
- Electroporation

Diverse Spectrum of Edits
- Disrupt
- Remove
- Replace
- Insert

SpCas9: *Streptococcus pyogenes* Cas9; SaCas9: *Staphylococcus aureus* Cas9
Cas9 Stimulates the Endogenous Repair Pathways

WT Cas9

DSB

5'

C-NHEJ

Locus Unaltered
Small Deletions
Small Insertions

Alt-NHEJ

Deletions
Blunt EJ
MMEJ
SD-MMEJ

3'

Resection

HDR

Large Deletions
SSA
HR

Correction
Cas9 is a Flexible Tool

- Could we engage different pathways by using these different variants?
- Could we selectively stimulate HDR?
DSBs Generated by D10A are Predominantly Repaired by HDR

Bothmer et al., Nat Comm 2017
Do Gene Conversion and Gene Correction have the same Genetic Requirement?

Gene Correction

Gene Conversion

Do they both dependent on the HR pathway?
Gene Conversion and Gene Correction have Different Genetic Requirements

HR is required for repair from double stranded donors (endogenous homology tracks or plasmids) but not single stranded donors.
Conclusions from the Dual Nick Analysis

- Different ends activate different DNA repair pathways

- Different donors stimulate different pathways
 Gene Correction mediated by ssODN is not HR dependent

Bothmer et al., Nat Comm 2017
Prioritization Principles

Medical Need
- Severe diseases where current treatments, if any, are poor
- Potential for durable therapies to provide unique benefit

Biology & Clinical
- Clear biological hypothesis for genomic intervention
- Favorable clinical and regulatory path

Technical
- Validated delivery approaches
- Mutation feasibly corrected

Product Pipeline

Eye
- LCA10 (EDIT-101)
- Ocular HSV
- Additional ocular indications

Lung
- Cystic Fibrosis

Muscle
- Duchenne Muscular Dystrophy

Liver
- Alpha-1 Antitrypsin Deficiency
- Infectious diseases of liver

Bone Marrow & Blood
- Hemoglobinopathies
- Engineered T cells for cancer
- Additional bone marrow and blood indications
Thank You

- Hayat Abdulkerim
- Luis Barrera
- Anne Bothmer
- Frank Buquicchio
- Dawn Ciulla
- Cecilia Cotta-Ramusino
- Georgia Giannoukos
- Kiran Gogi
- Jennifer Gori

- Fred Harbinski
- Hari Jayaram
- Eugenio Marco
- Carrie Margulies
- Tanushree Phadke
- Terence Ta
- Grant Welstead
- Chris Wilson

- Vic Myer

- I2 Pharmaceutical Team